A galvanic (voltaic) cell consists of an electrode composed of nickel in a 1.0 M nickel(II) ion solution and another electrode composed of copper in a 1.0 M copper(I) ion solution, connected by a salt bridge. Calculate the standard potential for this cell at 25 °C .

Respuesta :

Answer: The standard potential of the cell is 0.77 V

Explanation:

We know that:

[tex]E^o_{Ni^{2+}/Ni}=-0.25V\\E^o_{Cu^{+}/Cu}=0.52V[/tex]

The substance having highest positive [tex]E^o[/tex] reduction potential will always get reduced and will undergo reduction reaction.

The half reaction follows:

Oxidation half reaction: [tex]Ni(s)\rightarrow Ni^{2+}(aq)+2e^-[/tex]

Reduction half reaction: [tex]Cu^{+}(aq)+e^-\rightarrow Cu(s)[/tex]       ( × 2)

To calculate the [tex]E^o_{cell}[/tex] of the reaction, we use the equation:

[tex]E^o_{cell}=E^o_{cathode}-E^o_{anode}[/tex]

Substance getting oxidized always act as anode and the one getting reduced always act as cathode.

Putting values in above equation follows:

[tex]E^o_{cell}=0.52-(-0.25)=0.77V[/tex]

Hence, the standard potential of the cell is 0.77 V