Respuesta :

The length of MK is 9

Explanation:

The length of the sides are [tex]J K=36[/tex] , [tex]\mathrm{JL}=48[/tex] , [tex]J N=60[/tex]

We need to determine the length of MK

From the figure, we can see that JMN is a triangle and KL is parallel to MN.

Then, by side - splitter theorem, we have,

[tex]\frac{JK}{KM} =\frac{JL}{LN}[/tex]

where [tex]J K=36[/tex] , [tex]\mathrm{JL}=48[/tex]

The length of LN can be determined by subtracting JN and JL.

Thus, we have,

[tex]LN=JN-JL[/tex]

[tex]LN=60-48=12[/tex]

The length of LN is [tex]LN=12[/tex]

Substituting the values [tex]J K=36[/tex] , [tex]\mathrm{JL}=48[/tex] and [tex]LN=12[/tex] in [tex]\frac{JK}{KM} =\frac{JL}{LN}[/tex], we have,

[tex]\frac{36}{KM} =\frac{48}{12}[/tex]

Multiplying both sides by 12, we have,

[tex]\frac{36\times 12}{KM} =48[/tex]

 [tex]\frac{432}{KM} =48[/tex]

  [tex]\frac{432}{48} =KM[/tex]

     [tex]9=KM[/tex]

Thus, the length of MK is 9