Respuesta :

The equation of the line is [tex]y=\frac{-1}{5} x-\frac{21}{5}[/tex].

Solution:

The points on the line are (–6, –3) and (4, –5).

 [tex]x_{1}=-6, y_{1}=-3, x_{2}=4, y_{2}=-5[/tex]

Slope of the line:

 [tex]$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

 [tex]$m=\frac{-5-(-3)}{4-(-6)}[/tex]

 [tex]$m=\frac{-5+3}{4+6}[/tex]

[tex]$m=\frac{-2}{10}[/tex]

[tex]$m=\frac{-1}{5}[/tex]

Point-slope formula:

 [tex]y-y_{1}=m\left(x-x_{1}\right)[/tex]

 [tex]$y-(-3)=\frac{-1}{5}(x-(-6))[/tex]

 [tex]$y+3=\frac{-1}{5}(x+6)[/tex]

 [tex]$y+3=\frac{-1}{5} x-\frac{6}{5}[/tex]

Subtract 3 from both sides of the equation.

[tex]$y=\frac{-1}{5} x-\frac{21}{5}[/tex]

The equation of the line is  [tex]y=\frac{-1}{5} x-\frac{21}{5}[/tex].