The function ​f(x,y)=2x + 2y has an absolute maximum value and absolute minimum value subject to the constraint 9x^2 - 9xy + 9y^2 =25. Use Lagrange multipliers to find these values.

Respuesta :

Answer:

the minimum is located in x = -5/3 , y= -5/3

Step-by-step explanation:

for the function

f(x,y)=2x + 2y

we define the function g(x)=9x² - 9xy + 9y² - 25  ( for g(x)=0 we get the constrain)

then using Lagrange multipliers f(x) is maximum when

fx-λgx(x)=0 → 2 - λ (9*2x - 9*y)=0 →

fy-λgy(x)=0 → 2 - λ (9*2y - 9*x)=0

g(x) =0 → 9x² - 9xy + 9y² - 25 = 0

subtracting the second equation to the first we get:

2 - λ (9*2y - 9*x) - (2 - λ (9*2x - 9*y))=0

- 18*y + 9*x + 18*x - 9*y = 0

27*y = 27 x  → x=y

thus

9x² - 9xy + 9y² - 25 = 0

9x² - 9x² + 9x² - 25 = 0

9x² = 25

x = ±5/3

thus

y = ±5/3

for x=5/3 and y=5/3 →  f(x)= 20/3 (maximum) , while for x = -5/3 , y= -5/3 →  f(x)= -20/3  (minimum)

finally evaluating the function in the boundary , we know because of the symmetry of f and g with respect to x and y that the maximum and minimum are located in x=y

thus the minimum is located in x = -5/3 , y= -5/3