When a particular rock formed it contained 12mg of radioactive isotope of potassium-40. The rock now contains 3mg of potassium-40. The half life of potassium-40 is 1.3 billion years. The approximate age of the rock is _____ billion years

Respuesta :

Answer : The age of the rock is, 2.60 billion years

Explanation :

Half-life = 1.3 billion years

First we have to calculate the rate constant, we use the formula :

[tex]k=\frac{0.693}{t_{1/2}}[/tex]

[tex]k=\frac{0.693}{1.3\text{ billion years}}[/tex]

[tex]k=0.533\text{ billion years}^{-1}[/tex]

Now we have to calculate the time passed.

Expression for rate law for first order kinetics is given by:

[tex]t=\frac{2.303}{k}\log\frac{a}{a-x}[/tex]

where,

k = rate constant  = [tex]0.533\text{ billion years}^{-1}[/tex]

t = time passed by the sample  = ?

a = initial amount of the reactant  = 12 mg

a - x = amount left after decay process = 3 mg

Now put all the given values in above equation, we get

[tex]t=\frac{2.303}{0.533}\log\frac{12}{3}[/tex]

[tex]t=2.60\text{ billion years}[/tex]

Therefore, the age of the rock is, 2.60 billion years