consider the function f(x) = x2 2x – 15. what are the x-intercepts of the function? left-most x-intercept: ( , 0) right-most x-intercept: ( , 0)

Respuesta :

x^2 + 2x - 15 = 0
(x - 3)(x + 5) = 0
x = 3 or x = -5
left-most x-intercept: (-5, 0)
right-most x-intercept: (3, 0)

we have

[tex]f(x)=x^{2} +2x-15[/tex]

we know that

The x-intercept is the value of x when the value of the function is equal to zero

so

in this problem

Find the roots of the function

equate the function to zero

[tex]x^{2} +2x-15=0[/tex]

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]x^{2} +2x=15[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex]x^{2} +2x+1=15+1[/tex]

[tex]x^{2} +2x+1=16[/tex]

Rewrite as perfect squares

[tex](x+1)^{2}=16[/tex]

Square root both sides

[tex](x+1)=(+/-)\sqrt{16}[/tex]

[tex](x+1)=(+/-)4[/tex]

[tex]x=-1(+/-)4[/tex]

[tex]x1=-1+4=3[/tex]

[tex]x2=-1-4=-5[/tex]

[tex]x^{2} +2x-15=(x-3)(x+5)[/tex]

therefore

the answer is

the x-intercepts are the points [tex](3,0)[/tex] and [tex](-5,0)[/tex]