Respuesta :
The binomial expansion: [tex] T_{k+1}= \frac{n!}{(n-k+1 )!}a^{n-k} b^{k} [/tex]
a = 2y, b = 4 x^3, n = 4
( x )^3k = x^ 9
k = 3
[tex] T_{4}= \frac{24}{6}(2y) ^{3-1} (4x^{3} )^{3} [/tex]
[tex]T4=512 x^{9} y[/tex]
Answer: the coefficient is 512.
a = 2y, b = 4 x^3, n = 4
( x )^3k = x^ 9
k = 3
[tex] T_{4}= \frac{24}{6}(2y) ^{3-1} (4x^{3} )^{3} [/tex]
[tex]T4=512 x^{9} y[/tex]
Answer: the coefficient is 512.
Answer: The coefficient of the [tex]x^9y[/tex] term in the binomial expansion is 512.
Step-by-step explanation:
Since we have given that
[tex](2y+4x^3)^4[/tex]
We have to find the coefficient of [tex]x^9y[/tex] term in the binomial expansion.
[tex]T_2=^4C_1(2y)^1(4x^3)^3\\\\T_2=4\times 2\times 4^3x^9y\\\\T_2=512x^9y[/tex]
Hence, the coefficient of the [tex]x^9y[/tex] term in the binomial expansion is 512.