Respuesta :

[tex]f(x) = 0\iff x^2-48=0 \iff x^2 = 48 \iff x=\pm \sqrt{48} = \pm 4\sqrt{3}[/tex]

we have

[tex]f(x)=x^{2}-48[/tex]

To find the roots equate the function to zero

[tex]x^{2}-48=0[/tex]

Step 1

Adds [tex]48[/tex] to both sides of the equation

[tex]x^{2}-48+48=0+48[/tex]

[tex]x^{2}=48[/tex]

Step 2

Take the square root of both sides

[tex]\sqrt{x^{2}}= \sqrt{48}[/tex]

[tex]x=(+/-)\sqrt{48} \\x1=+\sqrt{48}=4\sqrt{3} \\ x2=-\sqrt{48}=-4\sqrt{3}[/tex]

therefore

the answer is

The roots are

[tex]x1=4\sqrt{3}[/tex]

[tex]x2=-4\sqrt{3}[/tex]