Respuesta :

(2,0)

All the other points listed are in the side of points that do not belong to the set of soluctions.

we have

[tex]y> -3x+2[/tex]

The solution is the shaded area above the dotted line

we know that

If a point is a solution of the inequality, then the coordinates of the point must satisfy the inequality

We will verify all cases to determine the solution of the problem

Case A) Point [tex](0,2)[/tex]

[tex]x=0\\y=2[/tex]

Substitute the value of x and y in the inequality and verify

[tex]2> -3*0+2[/tex]

[tex]2>2[/tex] -------> is not true

therefore

the point [tex](0,2)[/tex] is not a solution of the inequality

Case B) Point [tex](2,0)[/tex]

[tex]x=2\\y=0[/tex]

Substitute the value of x and y in the inequality and verify

[tex]0> -3*2+2[/tex]

[tex]0>-4[/tex] -------> is true

therefore

the point [tex](2,0)[/tex] is a solution of the inequality

Case C) Point [tex](1,-2)[/tex]

[tex]x=1\\y=-2[/tex]

Substitute the value of x and y in the inequality and verify

[tex]-2> -3*1+2[/tex]

[tex]-2>-1[/tex] -------> is not true

therefore

the point  [tex](1,-2)[/tex] is not a solution of the inequality

Case D) Point [tex](-2,1)[/tex]

[tex]x=-2\\y=1[/tex]

Substitute the value of x and y in the inequality and verify

[tex]1> -3*(-2)+2[/tex]

[tex]1>8[/tex] -------> is not true

therefore

the point [tex](-2,1)[/tex] is not a solution of the inequality

therefore

the answer is the Point B

[tex](2,0)[/tex]

To better understand the problem see the attached figure


Ver imagen calculista