What is the inverse of the function g(x)=-\dfrac{2}{3}x-5g(x)=− 3 2 ​ x−5g, left parenthesis, x, right parenthesis, equals, minus, start fraction, 2, divided by, 3, end fraction, x, minus, 5?

Respuesta :

Answer:

[tex]g^{-1}(x)=-\frac{3}{2}x-\frac{15}{2}[/tex]

Step-by-step explanation:

Given function,

[tex]g(x) = -\frac{2}{3}x-5[/tex]

Step 1 : Replace g(x) by y:

[tex]y = -\frac{2}{3}x-5[/tex]

Step 2 : Swap x and y:

[tex]x = -\frac{2}{3}y-5[/tex]

Step 3 : Solve the equation for y ( isolate y in the left side ):

[tex]x +\frac{2}{3}y=-5[/tex]

     [tex]\frac{2}{3}y=-5-x[/tex]

      [tex]y=\frac{3}{2}(-5-x)[/tex]

      [tex]y=-\frac{15}{2}-\frac{3}{2}x[/tex]

      [tex]y=-\frac{3}{2}x-\frac{15}{2}[/tex]

Step 4: Replace y by [tex]g^{-1}(x)[/tex]:

[tex]g^{-1}(x)=-\frac{3}{2}x-\frac{15}{2}[/tex]

Hence, the inverse of the function g(x) is [tex]g^{-1}(x)=-\frac{3}{2}x-\frac{15}{2}[/tex].