Answer : The energy of a photon of X-rays is [tex]1.32\times 10^{-17}J[/tex]
Explanation : Given,
Wavelength of photon = [tex]15.0nm=15.0\times 10^{-9}m[/tex]
conversion used : [tex]1nm=10^{-9}m[/tex]
Formula used :
[tex]E=h\times \nu[/tex]
As, [tex]\nu=\frac{c}{\lambda}[/tex]
So, [tex]E=h\times \frac{c}{\lambda}[/tex]
where,
[tex]\nu[/tex] = frequency of photon
h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]
[tex]\lambda[/tex] = wavelength of photon = [tex]15.0\times 10^{-9}m[/tex]
c = speed of light = [tex]3\times 10^8m/s[/tex]
Now put all the given values in the above formula, we get:
[tex]E=(6.626\times 10^{-34}Js)\times \frac{(3\times 10^{8}m/s)}{(15.0\times 10^{-9}m)}[/tex]
[tex]E=1.32\times 10^{-17}J[/tex]
Therefore, the energy of a photon of X-rays is [tex]1.32\times 10^{-17}J[/tex]