Hospital X-ray generators emit X-rays with wavelength of about 15.0 nanometers (nmnm), where 1nm=10−9m1nm=10−9m. What is the energy of a photon of the X-rays

Respuesta :

Answer :  The energy of a photon of X-rays is [tex]1.32\times 10^{-17}J[/tex]

Explanation : Given,

Wavelength of photon = [tex]15.0nm=15.0\times 10^{-9}m[/tex]

conversion used : [tex]1nm=10^{-9}m[/tex]

Formula used :

[tex]E=h\times \nu[/tex]

As, [tex]\nu=\frac{c}{\lambda}[/tex]

So, [tex]E=h\times \frac{c}{\lambda}[/tex]

where,

[tex]\nu[/tex] = frequency of photon

h = Planck's constant = [tex]6.626\times 10^{-34}Js[/tex]

[tex]\lambda[/tex] = wavelength of photon  = [tex]15.0\times 10^{-9}m[/tex]

c = speed of light = [tex]3\times 10^8m/s[/tex]

Now put all the given values in the above formula, we get:

[tex]E=(6.626\times 10^{-34}Js)\times \frac{(3\times 10^{8}m/s)}{(15.0\times 10^{-9}m)}[/tex]

[tex]E=1.32\times 10^{-17}J[/tex]

Therefore, the energy of a photon of X-rays is [tex]1.32\times 10^{-17}J[/tex]