find the area of the surface generated by revolving the curve y= (2x-x^2)^1/2, 0.25<=x<=1.25, about the X-Axis

\(y=\sqrt{2x-x^{2}}\) 0.25 <= x <= 1.25

Respuesta :

Answer:

A = 2π

Step-by-step explanation:

To calculate the area of the surface generated by revolving the curve

y = √(2x -x²) about the x-axis for the interval 0.25 ≤ x ≤ 1.25 can be found by

[tex]A = 2\pi\int\limits^b_a f(x){\sqrt{1+f'(x)} } \, dx[/tex]

where f(x) = y = √(2x -x²)

Integrating the f(x) yields

f'(x) = (1 - x)/√(2x -x²)

so the above equation becomes

[tex]A = 2\pi\int\limits^b_a \sqrt{2x - x^{2} } {\sqrt{1+(\frac{1-x}{\sqrt{2x-x^2} } } })^2 \, dx[/tex]

The second term can be simplified to

[tex]{\sqrt{1+(\frac{1-x}{\sqrt{2x-x^2} } } })^2 ={\sqrt{\frac{1}{{2x-x^2} } } }={\frac{1}{{\sqrt{2x-x^2}} }[/tex]

Now equation reduces to

[tex]A = 2\pi\int\limits^b_a \sqrt{2x - x^{2} } \frac{1}{\sqrt{2x-x^2} } \, dx[/tex]

The term √(2x -x²) cancels out

[tex]A = 2\pi\int\limits^b_a \, dx = [x][/tex]

Evaluating the limits

[tex]A = 2\pi(1.25 - 0.25)[/tex]

[tex]A = 2\pi(1) = 2\pi[/tex]