Respuesta :

The shortest distance between P and Q is 9.4 units.

Solution:

The coordinate of P is (–4, –2).

The coordinate of Q is (4, 3).

Let [tex]x_1=-4, y_1=-2, x_2=4, y_2=3[/tex].

To find the shortest distance between P and Q:

Distance formula:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Substitute the given values in the formula, we get

[tex]d=\sqrt{(4-(-4))^2+(3-(-2))^2}[/tex]

[tex]d=\sqrt{(4+4)^2+(3+2)^2}[/tex]

[tex]d=\sqrt{(8)^2+(5)^2}[/tex]

Using 8² = 64 and 5² = 25

[tex]d=\sqrt{64+25}[/tex]

[tex]d=\sqrt{89}[/tex]

d = 9.4

The shortest distance between P and Q is 9.4 units.