Answer:
Mean=0.1500mm
Variance=0.00025mm
Explanation:
The discrete uniform distribution has parameters
a=13 and b=17
Calculating the mean:
[tex]E(x)=\frac{13+17}{2}\\ E(x)=15*10^{-2}mm\\ or\\E(x)=0.1500mm[/tex]
For variance
[tex]Var(x)=\frac{(17-13+1)^{2} -1}{9.5}\\Var(x)=2.5*10^{-4}mm\\ or\\Var(x)=0.00025mm[/tex]