Respuesta :

The inverse of the function is [tex]y=-\frac{2}{7} x+\frac{8}{7}[/tex]

Explanation:

The given function is [tex]f(x)=-\frac{7}{2} x+4[/tex]

To determine the inverse of a function, we need to interchange the variables and solve for y.

Let us interchange the variables x and y

Thus, we have,

[tex]x=-\frac{7}{2} y+4[/tex]

Now, we shall solve for y

Subtracting both sides of the equation by 4, we get,

[tex]x-4=-\frac{7}{2} y[/tex]

Multiplying both sides of the equation by [tex]-\frac{2}{7}[/tex], we get,

[tex]-\frac{2}{7} (x-4)= y[/tex]

Switch sides, we have,

[tex]y=-\frac{2}{7} (x-4)[/tex]

Multiplying the terms within the bracket, we have,

[tex]y=-\frac{2}{7} x+\frac{8}{7}[/tex]

Thus, the inverse of the function is [tex]y=-\frac{2}{7} x+\frac{8}{7}[/tex]