Answer:
a.P<x<9.85 orx>10.15)=0.3174, Total defects=317.4
b.p=0.0026,total defects=2.6
c.Less of the items produced will be classified as defects.
Step-by-step explanation:
a.The standard score,z, is esentially x reduced by process mean then divided my process standard deviation.
[tex]\mu=10,\sigma=0.15\\Therefore:-\\z=\frac{x-\mu}{\sigma}=\frac{9.85-10}{0.15}\approx-1.0\\z=\frac{x-\mu}{\sigma}=\frac{10.15-10}{0.15}\approx+1.0\\P(x<9.85/x>10.15)=P(Z<-1.0/Z>+1.0)\\=2P(Z<-1.0)=2(0.1587)=0.3174\\[/tex]
Total defects=Production*Probability
=0.3174*1000
[tex]=317.4[/tex]
b. [tex]\mu=10,\sigma=0.05[/tex]
therefore:-
[tex]z=\frac{x-\mu}{\sigma}=\frac{9.85-10}{0.05}\approx-3.0\\z=\frac{x-\mu}{\sigma}=\frac{10.15-10}{0.05}\approx+3.0\\\\=P(x<9.85/x>10.15)=P(Z<-3.0/Z>+3.0)\\=2P(Z<--3.0)=2(0.0013)\\=0.0026\\[/tex]
Defects=Probability*Production
=0.0026*1000
=2.6
c.Reducing process variation results in a significant reduction in the number of unit defects.