Respuesta :

False if y=f(x) then x= inverse of f(x) or f^-1(x)

Answer:

The statement is false as it depends on the domain

Step-by-step explanation:

We are given the statement,

For a trigonometric function [tex]y=f(x)[/tex] implies [tex]x=f^{-1}(y)[/tex].

This statement is not always true.

For example,

The function [tex]y=\sin x[/tex] is one-one and onto in the domain [tex][-\frac{\pi}{2},\frac{\pi}{2}][/tex].

Thus, its inverse exists in [tex][-\frac{\pi}{2},\frac{\pi}{2}][/tex].

That is, in [tex][-\frac{\pi}{2},\frac{\pi}{2}][/tex], [tex]y=\sin x[/tex] implies [tex]x=\sin^{-1}(y)[/tex].

Hence, we see that,

It depends on the domain for the given statement to be true.

Thus, the statement is false.