Respuesta :

caylus
Hello,

y=x²/4+bx+10=1/4(x²+2*2b+4b²)+10-b²
=(1/4'x+2b)²+10-b²
==>-2b=6==>b=-3

we have

[tex]f(x)=\frac{1}{4} x^{2} +bx+10[/tex]

This is a vertical parabola open upward

The axis of symmetry is equal to the x-coordinate of the vertex

The vertex is the point (h,k)

the equation of the axis of symmetry is [tex]x=h[/tex]

In this problem

[tex]x=6[/tex]

so the x-coordinate of the vertex is [tex]h=6[/tex]

Convert the quadratic equation in vertex form

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]f(x)-10=\frac{1}{4} x^{2} +bx[/tex]

Factor the leading coefficient

[tex]f(x)-10=\frac{1}{4}(x^{2} +4bx)[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex]f(x)-10+b^{2}=\frac{1}{4}(x^{2} +4bx+4b^{2})[/tex]

Rewrite as perfect squares

[tex]f(x)+(b^{2}-10)=\frac{1}{4}(x+2b)^{2}[/tex]

[tex]f(x)=\frac{1}{4}(x+2b)^{2}-(b^{2}-10)[/tex]

remember that

[tex]h=6[/tex]

so

[tex](x+2b)=(x-6)[/tex]

[tex]2b=-6[/tex]

[tex]b=-3[/tex]

substitute in the equation

[tex]f(x)=\frac{1}{4}(x-6)^{2}-((-3)^{2}-10)[/tex]

[tex]f(x)=\frac{1}{4}(x-6)^{2}+1[/tex]

therefore

the answer is

[tex]b=-3[/tex]