The steam requirements of a manufacturing facility are being met by a boiler whose rated heat input is 5.5 × 106 Btu/h. The combustion efficiency of the boiler is measured to be 0.7 by a hand-held flue gas analyzer. After tuning up the boiler, the combustion efficiency rises to 0.8. The boiler operates 5200 h a year intermittently. Taking the unit cost of energy to be $23/106 Btu, determine the annual energy and cost savings as a result of tuning up the boiler.

Respuesta :

Solution:

Given Information,

Heat input is ( [tex]Q_{in}[/tex] ) = 5.5 × [tex]10^{6}[/tex] Btu/h

Combustion efficiency of the boiler ([tex]n_{furnance}[/tex]) = 0.7

Combustion efficiency after turn up ([tex]n_{furnance,now}[/tex]) = 0.8

Operation Hour (t) = 5200h

Unit cost (c) = [tex]\frac{23 dollar}{10^{6}Btu }[/tex]

Calculate heat output from the boiler  [tex]Q_{out}[/tex] = [tex]Q_{in}[/tex] x [tex]n_{furnance}[/tex]

                                                                      = 5.5 x [tex]10^{6}[/tex] x 0.7

                                                                      = 3.85 x [tex]10^{6}[/tex] Btu/h

Calculate the heat input to the boiler after the tune-up

[tex](Q_{in} ){new}[/tex] = [tex]Q_{out}[/tex] / [tex](n_{furnance} ){new}[/tex]

               = 3.85 x [tex]10^{6}[/tex] / 0.8

               = 4.8125  x [tex]10^{6}[/tex] Btu/h

Calculate the saved energy after the tune-up

[tex](Q_{in} ){saved}[/tex] = [tex]Q_{in}[/tex] - [tex](Q_{in} ){new}[/tex]

                 = 5.5 x [tex]10^{6}[/tex] - 4.8125  x [tex]10^{6}[/tex] Btu/h

                 = 0.6875  x [tex]10^{6}[/tex] Btu/h

Calculate the annual energy saving ( [tex]E_{Saving}[/tex] )

[tex]E_{Saving}[/tex] = [tex](Q_{in} ){saved}[/tex] x t

           = ( 0.6875  x [tex]10^{6}[/tex] Btu/h ) ( 5200 hr/yr)

           = 3575 x [tex]10^{6}[/tex] Btu/h

Calculate the annual cost saving

Annual cost saving = [tex]E_{Annual saving}[/tex] x Unit cost

                                = 3575 x [tex]10^{6}[/tex] Btu/h x [tex]\frac{23 dollar}{10^{6}Btu }[/tex]

                                = 82225