A battery-operated car utilizes a 12.0 V system. Initially, the car is at rest at the base of a 195 m high hill. Some time later, the 757 kg car reaches the top of the hill with a speed of 25.0 m/s. How much charge did the batteries move through the motor to accomplish this, neglecting friction

Respuesta :

Answer:

140265.8 C = 1.403 × 10⁵ C

Explanation:

The battery's electric potential energy is used to account for the kinetic and potential work done in moving the car up this hill.

Potential work required to move the 757 kg car up a vertical height of 195 m = mgh

P.E = 757 × 9.8 × 195 = 1446627 J

Kinetic work done = (1/2)(m)(v²)

K.E = (1/2)(757)(25²) = 236562.5 J

Total work done in moving the car up that height = 1446627 + 236562.5 = 1683189.5 J

And this would be equal to the potential of the battery.

For the battery, potential difference = (electric potential energy)/(charges moved)

ΔV = ΔU/q

q = ΔU/ΔV

ΔU = 1683189.5 J

ΔV = 12.0 V

q = 1683189.5/12 = 140265.8 C

Explanation:

Below is an attachment containing the solution.

Ver imagen nwandukelechi