Solve the following simultaneous equation using either the substitution method or the elimination method, showing all the necessary steps.

Will award brainliest!!

Solve the following simultaneous equation using either the substitution method or the elimination method showing all the necessary steps Will award brainliest class=

Respuesta :

Answer:

[tex]x=1\frac{83}{91}\\y=-2\frac{73}{91}[/tex]

Step-by-step explanation:

#Using the method of substitution and replacement of unknown values.

Given that

[tex]\frac{3}{2}x+\frac{2}{3}y=1...(i)\\and\\\frac{1}{6}x-\frac{3}{5}y=2...(ii)\\[/tex]

Express eqtn (ii) in terms of x

[tex]\frac{1}{6}x=2+\frac{3}{5}y\\x=12+\frac{18}{5}y[/tex]

Replacing for x in eqtn (i)

[tex]\frac{3}{2}(12+\frac{18}{5}y)+\frac{2}{3}y=1\\18+\frac{27}{5}y+\frac{2}{3}y=1\\18-1=-\frac{91}{15}y\\y=-2\frac{73}{91}[/tex]

Substitute y value in eqtn(ii) to obtain x

[tex]Y=-2\frac{73}{91}\\\frac{1}{6}x-\frac{3}{5}y=2\\x=2+\frac{3}{5}(-2\frac{73}{91})\\x=1\frac{83}{91}[/tex]