Answer:
The new pressure is 777.926 mmHg.
Explanation:
We use the ideal gas equation
[tex]PV = nrT[/tex].
where [tex]P, V , n,[/tex] and [tex]T[/tex] are the pressure, volumes, moles, and temperature of the gas respectively. [tex]r[/tex] is the gas constant [tex]r = 8.3145\: j*mol^{-1}*K^{-1}[/tex].
Initially, for the gas
[tex]V = 5L = 0.005m^3[/tex]
[tex]P = 745.0 \:mmHg = 99325.2\: Pa[/tex]
[tex]T = 22^oC = 295\:K.[/tex]
therefore, the number of moles [tex]n[/tex] is
[tex](99325.2\:Pa)(0.005m^3) = n( 8.3145\: j*mol^{-1}*K^{-1})(295K)[/tex]
[tex]n = \dfrac{(99325.2\:Pa)(0.005m^3)}{( 8.3145\: j*mol^{-1}*K^{-1})(295K)}[/tex]
[tex]n= 0.2025[/tex]
Now, when the temperature rises to 35°C, (assuming constant volume) we have
[tex]P = \dfrac{0.2025mol*8.3145\: j*mol^{-1}*K^{-1}308K }{0.005m^3}[/tex]
[tex]P = 103715.1 \: Pa[/tex]
or in mmHg this is
[tex]\boxed{P = 777.926\:mmHg}[/tex]