Respuesta :

Answer

Find out the  solution to the system of equations .

To prove

As the equations are

y = x – 10 , 4 = 2xy

[tex]Put\ y = \frac{4}{2x}[/tex]

in  the equation  y = x – 10

[tex]\frac{4}{2x} = x - 10[/tex]

Than the equation becomes

2x² - 20x - 4 = 0

Taking 2 as common

x² - 10x - 2 = 0

Now using the discriment formula

[tex]D = -b\pm \frac{\sqrt{b^{2} - 4ac}}{2a}[/tex]

Here a = 1 , b = -10 , c = -2

Put in the above

[tex]x = 10\pm \frac{\sqrt{(-10)^{2} - 4\times 1\times -2}}{2}[/tex]

[tex]x = 10\pm \frac{\sqrt{100+ 8}}{2}[/tex]

[tex]x = 5\pm \frac{\sqrt{108}}{2}[/tex]

[tex]x = 5\pm \frac{6\sqrt{3}}{2}[/tex]

[tex]x = 5\pm 3\sqrt{3}[/tex]

Thus the solution are

[tex]x = 5\ + 3\sqrt{3}[/tex]

Put in the  4 = 2xy

[tex]y = \frac{4}{2(5+3\sqrt{3} )}[/tex]

[tex]y = \frac{2}{(5+3\sqrt{3} )}[/tex]

When

[tex]x = 5\ - 3\sqrt{3}[/tex]

Put in the  4 = 2xy

[tex]y = \frac{4}{2(5 -3\sqrt{3} )}[/tex]

[tex]y = \frac{2}{(5 - 3\sqrt{3} )}[/tex]



 

Answer:

C is the answer

Step-by-step explanation:

I took the test on edge 2021