Answer:
[tex]-8+\sqrt{3}i[/tex]
Step-by-step explanation:
[tex]\sqrt{3}i\left(-1-3\sqrt{3}i\right)[/tex]
[tex]\mathrm{Apply\:complex\:arithmetic\:rule}:\quad \left(ai\right)\left(b+ci\right)=-ac+abi\\a=\sqrt{3},\:b=-1,\:c=-3\sqrt{3}\\=-\sqrt{3}\left(-3\sqrt{3}\right)+\sqrt{3}\left(-1\right)i[/tex]
[tex]\\\\\mathrm{Refine}\\=9-\sqrt{3}i\\=1-\left(9-\sqrt{3}i\right)\\-\left(9-\sqrt{3}i\right)\\Apply\:minus-plus\:rules\\-\left(-a\right)=a,\:\:\:-\left(a\right)=-a\\=-9+\sqrt{3}i\\=1-9+\sqrt{3}i\\=-8+\sqrt{3}i[/tex]
Hope this helps you!
Have a nice day!