Example:
How do we prove that a quadrilateral ABCD is a parallelogram given the vertices
A(-3,3), B(2,5), C (5,2) and D(0,0)?
prove both pairs of opposite sides a
kerulle!
Step 1: Show AB\\CD
A: (-3,3) and B: (2,5) 3-5--2 C: (5, 2) and D: (0,0) 2-0
Slope of AB: m = _ -3-0-5 Slope of CD: m=_ 500
So AB\\ CD because they have the same slope
5
Step 2:
Complete this part.

Example How do we prove that a quadrilateral ABCD is a parallelogram given the vertices A33 B25 C 52 and D00 prove both pairs of opposite sides a kerulle Step 1 class=

Respuesta :

Answer:

AB // CD and AD // BC, then ABCD is a parallelogram

Step-by-step explanation:

Step 2: Show AD // BC

A = (-3 , 3) and D = (0 , 0)

Find the slope of AD

[tex]m_{AD}=\frac{0-3}{0--3}=\frac{-3}{3}=-1[/tex]

B = (2 , 5) and C = (5 , 2)

[tex]m_{BC}=\frac{2-5}{5-2}=\frac{-3}{3}=-1[/tex]

The slope of AD = the slope of BC

So AD // BC because they have the same slope

Step 3:

Each two opposite sides are parallel in quadrilateral ABCD

So the quadrilateral is a parallelogram