Part A: The solution is [tex](-0.923,5.692)[/tex]
Part B: The point [tex](3,7)[/tex] is not in the solution set.
Explanation:
Part A: The given inequalities are [tex]3 x+4 y>20[/tex] and [tex]x<3 y-18[/tex]
The solution can be determined by solving the two inequalities by substitution method.
Changing inequalities to equality, we have,
[tex]x=3 y-18[/tex] and [tex]3 x+4 y=20[/tex]
Let us substitute [tex]x=3 y-18[/tex] in the equation [tex]3 x+4 y=20[/tex] , we get,
[tex]3 (3y-18)+4 y=20[/tex]
[tex]9y-54+4y=20[/tex]
[tex]13y=74[/tex]
[tex]y=5.692[/tex]
Substituting [tex]y=5.692[/tex] in [tex]x=3 y-18[/tex], we get,
[tex]x=3 (5.692)-18[/tex]
[tex]=17.076-18[/tex]
[tex]x=-0.923[/tex]
Thus, the solution set is [tex](-0.923,5.692)[/tex]
Part B: Now, we shall determine whether the point [tex](3,7)[/tex] is in the solution set.
Let us substitute the point [tex](3,7)[/tex] in the inequalities [tex]3 x+4 y>20[/tex] and [tex]x<3 y-18[/tex], we get,
[tex]3 (3)+4 (7)>20[/tex]
[tex]9+28>20[/tex]
[tex]37>20[/tex]
Also, substituting [tex](3,7)[/tex] in [tex]x<3 y-18[/tex], we get,
[tex]3<3 (7)-18[/tex]
[tex]3<21-18[/tex]
[tex]3<3[/tex]
Since, the point [tex](3,7)[/tex] does not satisfy one of the inequality [tex]x<3 y-18[/tex] , the solution set does not contain the point [tex](3,7)[/tex]
Thus, the point [tex](3,7)[/tex] is not in the solution set.