Respuesta :

Explanation:

First of all, we need to know that:

[tex]1 \ quart =\frac{1}{4} \ gallon[/tex]

From the problem, we know that:

[tex]\bullet \ \text{Angela has} \ 2\frac{1}{2} \ \text{gallon of blue paint} \\ \\ \bullet \ \text{Ryou has half as much white paint} \ (1\frac{1}{4} \ gallon)[/tex]

Converting gallon to quarts:

For Angela:

[tex]2\frac{1}{2}gallon=2.5gallon(\frac{4quarts}{1gallon})=10quarts[/tex]

For Ryou:

[tex]1\frac{1}{4}gallon=1.25gallon(\frac{4quarts}{1gallon})=5quarts[/tex]

Part 1. How many walls will be blue and how many walls will be white?

Number of blue walls:

[tex]\text{Nro blue walls}=\frac{10}{2\frac{3}{4}}=\frac{10}{2.75}=\frac{40}{11}=\frac{33+7}{11}=3\frac{7}{11}[/tex]

So we can paint 3 walls.

Number of white walls:

[tex]\text{Nro blue walls}=\frac{5}{2\frac{3}{4}}=\frac{5}{2.75}=\frac{20}{11}=\frac{11+9}{11}=1\frac{9}{11}[/tex]

So we can paint just one wall.

Part 2. How much paint will be left over?

For blue paint:

We can solve this by a rule of three as follows:

[tex]1walls ----------2\frac{3}{4}quarts \\ \\ \frac{7}{11}walls ---------xquarts \\ \\ \\ x=(\frac{7}{11})(2\frac{3}{4})=\frac{7}{4} \ \text{quarts left over}[/tex]

For white paint:

We can solve this by a rule of three as follows:

[tex]1walls ----------2\frac{3}{4}quarts \\ \\ \frac{9}{11}walls ---------xquarts \\ \\ \\ x=(\frac{9}{11})(2\frac{3}{4})=\frac{9}{4} \ \text{quarts left over}[/tex]