Answer: [tex]\bold{\text{Event A:}\quad \dfrac{1}{56}\qquad \text{Event B:}\quad \dfrac{1}{336}}[/tex]
Step-by-step explanation:
Event A:
[tex]\dfrac{\text{Ash, Elm, or Pine}}{\text{All 8 tree types}}\times \dfrac{\text{(Ash, Elm, or Pine) - 1}}{\text{remaining 7 tree types}}\times \dfrac{\text{(Ash, Elm, or Pine) - 2}}{\text{remaining 7 tree types}}\\\\\\\dfrac{3}{8}\times \dfrac{2}{7}\times \dfrac{1}{6}\times \dfrac{5}{5}\quad =\quad \large\boxed{\dfrac{1}{56}}[/tex]
You can also write this as:
[tex]\dfrac{1}{_8C_3}\ = \ \dfrac{1}{56}\\\\\\or\\\\\\\dfrac{8!}{3!(8-3)!}\ = \ \dfrac{1}{56}[/tex]
Event B:
[tex]\dfrac{\text{Willow}}{\text{All 8 tree types}}\times \dfrac{\text{Spruce}}{\text{remaining 7 tree types}}\times \dfrac{\text{Fir}}{\text{remaining 6 tree types}}\\\\\\\\\dfrac{1}{8}\times \dfrac{1}{7}\times \dfrac{1}{6}\quad = \quad \large\boxed{\dfrac{1}{336}}[/tex]
You can also write this as:
[tex]\dfrac{1}{_8P_3}\ = \ \dfrac{1}{336}\\\\\\or\\\\\\\dfrac{8!}{(8-3)!}\ = \ \dfrac{1}{336}\\[/tex]
Notes:
In Event A, order did NOT matter so it was a COMBINATION (C)
In Event B, order DID matter so it was a PERMUTATION (P)