Respuesta :

x^2 - 2x - 3 = 0
d = b^2 - 4ac
d = (-2)^2 - 4 x 1 x (-3)
d = 4 + 12 = 16
d = 16

we know that


The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to


[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]


the discriminant is equal to [tex]{b^{2}-4ac[/tex]

in this problem we have


[tex]-3=-x^{2} +2x[/tex]  

[tex]x^{2}-2x-3=0[/tex]  

so


[tex]a=1\\b=-2\\c=-3[/tex]


substitute the values

[tex]{(-2)^{2}-4(1)(-3)=4+12=16[/tex]

therefore

the answer is

[tex]16[/tex]