Respuesta :

caylus
Hello,

Answer C

I give you some sign "+".
You will use them later
++++++++++++++++++++++++++++
h(x)=x²+10x+7=x²+2*5x+25-18=(x+5)²-18

Answer:

option (c) is correct.

The vertex form of given function [tex]h(x)=7+10x+x^2[/tex] is [tex]h(x)=(x+5)^2-18[/tex]

Step-by-step explanation:

 Given : [tex]h(x)=7+10x+x^2[/tex]

We have to write h(x) in vertex form

For a given quadratic function [tex]f(x)=ax^2+bx+c[/tex] the vertex form can be written by completing square in such a way that we get, the equation in the form of [tex]f(x)=a(x-h)^2+k[/tex] , where (h,k) is the vertex.

Consider the given function [tex]h(x)=7+10x+x^2[/tex]

first writing in standard form , we get,

[tex]h(x)=x^2+10x+7[/tex]

Using identity, [tex](a+b)^2=a^2+b^2+2ab[/tex] , we have

x = a , and 2ab = 10x

Comparing , we get, b= 5

we need to add [tex]b^2[/tex] term

So add and subtract 25 in the given function , we get,

[tex]h(x)=x^2+10x+25-25+7[/tex]

Simplify , we get,

[tex]h(x)=(x+5)^2-18[/tex]

Thus, the vertex form of given function [tex]h(x)=7+10x+x^2[/tex] is [tex]h(x)=(x+5)^2-18[/tex]

option (c) is correct.