Respuesta :
we have
[tex] 32a^{3}+12a^{2} [/tex]
Find the greatest Common Factor GCF
we know that
[tex] 32=2^{5} \\ Factors=1,2,4,8,16,32\\ \\ a^{3} \\ Factors=1,a,a^{2} ,a^{3} \\ \\ 12=2^{2} *3\\ Factors=1,2,3,4,6,12\\ \\ a^{2} \\ Factors=1,a,a^{2} [/tex]
The GCF is equal to [tex] 4a^{2} [/tex]
so
the fully factored form is equal to
[tex] 32a^{3}+ 12a^{2}=4a^{2}(8a+3) [/tex]
the answer is
[tex] 4a^{2}(8a+3) [/tex]