Solution of the Schrödinger wave equation for the hydrogen atom results in a set of functions (orbitals) that describe the behavior of the electron. Each function is characterized by 3 quantum numbers: n, l, and ml ... n is known as the quantum number. ... l is known as the quantum number. ... ml is known as the quantum number. ... n specifies l specifies ml specifies ... A.The orbital orientation. B.The energy and average distance from the nucleus. C.The subshell - orbital shape.

Respuesta :

Answer :

'n' specifies  → (B) The energy and average distance from the nucleus.

'l' specifies   → (C) The subshell orbital shape.

'ml' specifies → (A) The orbital orientation.

Explanation :

Principle Quantum Numbers : It describes the size of the orbital. It is represented by n. n = 1,2,3,4....

Azimuthal Quantum Number : It describes the shape of the orbital. It is represented as 'l'. The value of l ranges from 0 to (n-1). For l = 0,1,2,3... the orbitals are s, p, d, f...

Magnetic Quantum Number : It describes the orientation of the orbitals. It is represented as [tex]m_l[/tex]. The value of this quantum number ranges from [tex](-l\text{ to }+l)[/tex]. When l = 2, the value of

Spin Quantum number : It describes the direction of electron spin. This is represented as [tex]m_s[/tex]. The value of this is [tex]+\frac{1}{2}[/tex] for upward spin and [tex]-\frac{1}{2}[/tex] for downward spin.

As per question we conclude that,

'n' specifies  → The energy and average distance from the nucleus.

'l' specifies   → The subshell orbital shape.

'ml' specifies → The orbital orientation.