Respuesta :

Answer:

The variable that has the highest power is considered to be the degree of polynomials in an algebraic equation.

A column:

1) [tex]4x^3[/tex] .

The degree is 3.

2)[tex]x^2+4[/tex].

The degree is 2.

3) [tex]x-2[/tex]

The degree is 1.

B column:

1) [tex]2x^2+1[/tex]

The degree is 2.

2) [tex]x^2-x[/tex]

The degree is 2.

3) [tex]x^3-5x^2+1[/tex]

The degree is 3.

A×B columns:

While Multiplying two terms in a equation, if the variables are same then multiply the constant value and sum the exponent value.

1) [tex](4x^3)(2x^2+1)[/tex].

=[tex]8x^5+4x^3.[/tex]

The degree is 5.

2) [tex](x^2+4)(x^2-x)[/tex].

=[tex]x^4-x^3+4x^2-4x[/tex].

The degree is 4.

3) [tex](x-2)(x^3-5x^2+1)[/tex].

[tex]=x^4-5x^3+x-2x^3+15x^2-3.\\=x^4-7x^3+15x^2+x-3.[/tex]

The degree is 4.