You are 2m from one audio speaker and 2.1m from another audio speaker. Both generate the identical sine wave with a frequency of 680 Hz. At your location, what is the phase difference between the waves? Give the answer in radians, using 340m/s as the velocity of sound.

Respuesta :

Answer:

the phase difference is 1.26 radian

Solution:

As per the question:

Distance, d = 2 m

Distance from the other speaker, d' = 2.1 m

Frequency, f = 680 Hz

Speed of sound, v = 340 m/s

Now,

To calculate the phase difference, [tex]\Delta \phi[/tex]:

Path difference, [tex]\Delta d = d' - d = 2.1 - 2 = 0.1\ m[/tex]

For the wavelength:

[tex]f\lambda = v[/tex]

where

c = speed of light in vacuum

[tex]\lambda [/tex] = wavelength

Now,

[tex]680\times \lambda = 340[/tex]

[tex]\lambda = 0.5\ m[/tex]

Now,

Phase difference, [tex]\Delta phi = 2\pi \frac{\Delta d}{\lambda}[/tex]

[tex]\Delta phi = 2\pi \frac{0.1}{0.5} = 1.26\ rad[/tex]