What is true about the solution of StartFraction x squared Over 2 x minus 6 EndFraction = StartFraction 9 Over 6 x minus 18 EndFraction?
x = plus-or-minus StartRoot 3 EndRoot, and they are actual solutions.
x = plus-or-minus StartRoot 3 EndRoot, but they are extraneous solutions.
x = 3, and it is an actual solution.
x = 3, but it is an extraneous solution.

Respuesta :

Answer:

[tex]x=\pm\sqrt{3}[/tex]  and they are actual solutions

Step-by-step explanation:

we have

[tex]\frac{x^2}{2x-6}=\frac{9}{6x-18}[/tex]

Factor the denominators both sides

[tex]\frac{x^2}{2(x-3)}=\frac{9}{6(x-3)}[/tex]

Simplify

[tex]\frac{x^2}{2}=\frac{9}{6}[/tex]

[tex]x^2=\frac{18}{6}[/tex]

[tex]x=\pm\sqrt{3}[/tex]

Verify

1) For [tex]x=\sqrt{3}[/tex]

[tex]\frac{\sqrt{3}^2}{2(\sqrt{3}-3)}=\frac{9}{6(\sqrt{3}-3)}[/tex]

[tex]\frac{3}{2(\sqrt{3}-3)}=\frac{9}{6(\sqrt{3}-3)}[/tex]

[tex]18=18[/tex] ---> is true

therefore

[tex]x=\sqrt{3}[/tex] ----> is an actual solution

2) For [tex]x=-\sqrt{3}[/tex]

[tex]\frac{-\sqrt{3}^2}{2(-\sqrt{3}-3)}=\frac{9}{6(-\sqrt{3}-3)}[/tex]

[tex]\frac{3}{2(-\sqrt{3}-3)}=\frac{9}{6(-\sqrt{3}-3)}[/tex]

[tex]18=18[/tex] ---> is true

therefore

[tex]x=-\sqrt{3}[/tex]  ----> is an actual solution

therefore

Answer:

The answer is A!

Step-by-step explanation: