Respuesta :
Answer: The concentration of chloride ions in the solution obtained is 0.674 M
Explanation:
To calculate the number of moles for given molarity, we use the equation:
[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}\times 1000}{\text{Volume of solution (in mL)}}[/tex] .....(1)
- For KCl:
Molarity of KCl solution = 0.675 M
Volume of solution = 297 mL
Putting values in equation 1, we get:
[tex]0.675=\frac{\text{Moles of KCl}\times 1000}{297}\\\\\text{Moles of KCl}=\frac{(0.675mol/L\times 297)}{1000}=0.200mol[/tex]
1 mole of KCl produces 1 mole of chloride ions and 1 mole of potassium ion
Moles of chloride ions in KCl = 0.200 moles
- For magnesium chloride:
Molarity of magnesium chloride solution = 0.338 M
Volume of solution = 664 mL
Putting values in equation 1, we get:
[tex]0.338=\frac{\text{Moles of }MgCl_2\times 1000}{664}\\\\\text{Moles of }MgCl_2=\frac{(0.338mol/L\times 664)}{1000}=0.224mol[/tex]
1 mole of magnesium chloride produces 2 moles of chloride ions and 1 mole of magnesium ion
Moles of chloride ions in magnesium chloride = [tex](2\times 0.224)=0.448mol[/tex]
Calculating the chloride ion concentration, we use equation 1:
Total moles of chloride ions in the solution = (0.200 + 0.448) moles = 0.648 moles
Total volume of the solution = (297 + 664) mL = 961 mL
Putting values in equation 1, we get:
[tex]\text{Concentration of chloride ions}=\frac{0.648mol\times 1000}{961}\\\\\text{Concentration of chloride ions}=0.674M[/tex]
Hence, the concentration of chloride ions in the solution obtained is 0.674 M
Based on the concentrations of the given solutions, the concentration of Cl⁻ is 0.674 M.
What is the moles of chloride ion in each solution?
Moles of a substance is calculated using the formula:
- Moles = molarity * volume
For 297 mL of 0.675 M KCl
297 mL = 0.297 L
moles of KCl = 0.675 * 0.297
moles of KCl = 0.200 moles
1 mole of KCl produces 1 mole of Cl⁻
Thus, moles of Cl⁻ = 0.200 moles
For 664 mL of 0.338 M MgCl₂
664 mL = 0.664 L
moles of MgCl₂ = 0.338 * 0.664
moles of MgCl₂ = 0.224 moles
1 mole of MgCl₂ produces 2 moles of Cl⁻
moles of Cl⁻ = 2 * 0.224
moles of Cl⁻ = 0.448 moles
Total moles of Cl⁻ = 0.448 + 0.200
moles of Cl⁻ = 0.648 moles
Volume of solution = 664 + 297
Volume of solution = 961 = 0.961 L
Molarity of Cl⁻ = 0.648 / 0.961
Molarity of Cl⁻ = 0.674 M
Therefore, the concentration of Cl⁻ is 0.674 M
Learn more about molarity at: https://brainly.com/question/489225