Respuesta :

frika

Answer:

See explanation

Step-by-step explanation:

Prove that

[tex]1^2+2^2+3^3+...+n^2=\dfrac{1}{6}n(n+1)(2n+1)[/tex]

1. When [tex]n=1,[/tex] we have

  • in left part [tex]1^2=1;[/tex]
  • in right part [tex]\dfrac{1}{6}\cdot 1\cdot (1+1)\cdot (2\cdot 1+1)=\dfrac{1}{6}\cdot 1\cdot 2\cdot 3=1.[/tex]

2. Assume that for all [tex]k[/tex] following equality is true

[tex]1^2+2^2+3^3+...+k^2=\dfrac{1}{6}k(k+1)(2k+1)[/tex]

3. Prove that for [tex]k+1[/tex] the following equality is true too.

[tex]1^2+2^2+3^3+...+(k+1)^2=\dfrac{1}{6}(k+1)((k+1)+1)(2(k+1)+1)[/tex]

Consider left part:

[tex]1^2+2^2+3^2+...+(k+1)^2=\\ \\=(1^2+2^2+3^3+...+k^2)+(k+1)^2=\\ \\=\dfrac{1}{6}k(k+1)(2k+1)+(k+1)^2=\\ \\=(k+1)\left(\dfrac{1}{6}k(2k+1)+k+1\right)=\\ \\=(k+1)\dfrac{2k^2+k+6k+6}{6}=\\ \\=(k+1)\dfrac{2k^2+7k+6}{6}=\\ \\=(k+1)\dfrac{2k^2+4k+3k+6}{6}=\\ \\=(k+1)\dfrac{2k(k+2)+3(k+2)}{6}=\\ \\=(k+1)\dfrac{(k+2)(2k+3)}{6}[/tex]

Consider right part:

[tex]\dfrac{1}{6}(k+1)((k+1)+1)(2(k+1)+1)=\\ \\\dfrac{1}{6}(k+1)(k+2)(2k+3)[/tex]

We get the same left and right parts, so the equality is true for [tex]k+1.[/tex]

By mathematical induction, this equality is true for all n.