Respuesta :
Answer:
The combinations of necklaces and bracelets that the artist could sell for exactly $12.00 are
B: 2 necklaces and 5 bracelets
D: 4 necklaces and 2 bracelets
G: No necklaces and 8 bracelets
Step-by-step explanation:
let the number of necklace be x
the number of bracelets be y
Then
The cost of one necklace is $2.25
The cost of one bracelets is $1.50
Thus
x(2.25) + y(1.50) = 12.00-------------------------(1)
Option A : 5 necklaces and 1 bracelet
(5)(2.25) + (1)(1.50) = 12.00
11.25 + 1.50 = 12.00
12.75 > 12.00
Option B :2 necklaces and 5 bracelets
(2)(2.25) + (5)(1.50) = 12.00
4.5 + 7.5 = 12.00
12. 00 = 12.00
Option C: 3 necklaces and 3 bracelets
(3)(2.25) + (3)(1.50) = 12.00
6.75 + 4.50 = 12.00
11.25 < 12.00
Option D: 4 necklaces and 2 bracelets
(4)(2.25) + (2)(1.50) = 12.00
9.00 + 3.00 = 12.00
12.00 = 12.00
Option E: 3 necklaces and 5 bracelets
(3)(2.25) + (5)(1.50) = 12.00
6.75 + 7.5 = 12.00
14.25 > 12.00
Option F: 6 necklaces and no bracelets
(6)(2.25) + (0)(1.50) = 12.00
13.5 + 0 = 12.00
13.5 > 12.00
Option G: No necklaces and 8 bracelets
(0)(2.25) + (0)(1.50) = 12.00
0 +12.00= 12.00
12.00 = 12.00
The combinations of necklaces and bracelets that the artist could sell for exactly $12.00.
B: 2 necklaces and 5 bracelets
D: 4 necklaces and 2 bracelets
G: No necklaces and 8 bracelets
Since the artist is selling necklaces at $2.25 each, and bracelets at $1.50 per each, then the corresponding values will be:
2(2.25) + 5(1.50) = 4.50 + 7.50 = 12.00
4(2.25) + 2(1.50) = 9 + 3 = 12.00
0(2.25) + 8(1.50) = 0 + 12 = 12
In conclusion, the correct options are B, D, and G.
Read related link on:
https://brainly.com/question/15007030