We have an upcoming test on Logorithms and my teacher forgot to go over how to solve logorithms with different bases. How would you solve them? for example,

3log[tex]_{4}[/tex] 2 +log[tex]_{5}[/tex] 512

Respuesta :

The value of  [tex]3log_{4}(2)+log_{5}(512)[/tex]  is about 5.376

Step-by-step explanation:

Let us revise some rules of logarithm

  • [tex]log(a)^{n}=n.log(a)[/tex]
  • [tex]log_{b}(a)=\frac{log(a)}{log(b)}[/tex]

∵ The expression is [tex]3log_{4}(2)+log_{5}(512)[/tex]

- By using the 1st rule in the first term

∵ [tex]3log_{4}(2)=log_{4}(2)^{3}[/tex]

∵ 2³ = 8

∴ [tex]log_{4}(2)^{3}=log_{4}(8)[/tex]

- By using the second rule

∵ [tex]log_{4}(8)=\frac{log(8)}{log(4)}=1.5[/tex]

∵ [tex]log_{5}(512)=\frac{log(512)}{log(5)}=3.876[/tex]

- Add the two answers

∴  [tex]3log_{4}(2)+log_{5}(512)[/tex] = 1.5 + 3.876

∴  [tex]3log_{4}(2)+log_{5}(512)[/tex] = 5.376

The value of  [tex]3log_{4}(2)+log_{5}(512)[/tex]  is about 5.376

Learn more:

You can learn more about the logarithmic expressions in brainly.com/question/11921476

#LearnwithBrainly