A box slides down a slope described by the equation y=(0.05 x2)m, where x is in meters. If the box has x components of velocity and acceleration vX= -4m/s and aX= -1.2m/s@ at x = 3m, determine the corresponding y components of velocity and acceleration at this instant

Respuesta :

Answer:

[tex]v_y=-1.2m/s,a_y=-0.76m/s^2[/tex]

Explanation:

We are given that

[tex]y=(0.05x^2)[/tex]

Where x (in m)

x component of velocity, [tex]v_x=-4m/s[/tex]

x- component of acceleration,[tex]a_x=-1.2 m/s^2[/tex]

x=3 m

We have to find the y-component of velocity and acceleration at this instant.

Differentiate w.r.t. time

[tex]\frac{dy}{dt}=0.05\times 2x\frac{dx}{dt}[/tex]

[tex]\frac{dy}{dt}=0.1x\frac{dx}{dt}=0.1xv_x[/tex]

By using the formula

[tex]\frac{dx^n}{dx}=nx^{n-1}[/tex]

[tex]v_x=\frac{dx}{dt}[/tex]

Substitute the values

[tex]v_y=\frac{dy}{dt}=0.1(3)\times (-4)=-1.2m/s[/tex]

Again differentiate w.r.t. t

[tex]a_y=\frac{dv_y}{dt}=0.1v_x+0.1x\frac{d(v_x)}{dt}[/tex]

Substitute the values

[tex]a_y=0.1(-4)+0.1(3)(-1.2)=-0.4-0.36=-0.76m/s^2[/tex]

Where [tex]a_x=\frac{dv_x}{dt}[/tex]

Hence, the y- component of velocity and acceleration

[tex]v_y=-1.2m/s,a_y=-0.76m/s^2[/tex]