The compound Xe(CF3)2 decomposes in afirst-order reaction to elemental Xe with a half-life of 30. min.If you place 7.50 mg of Xe(CF3)2 in a flask,how long must you wait until only 0.25 mg ofXe(CF3)2 remains?

Respuesta :

Answer:

[tex]t=147.24\ min[/tex]

Explanation:

Given that:

Half life = 30 min

[tex]t_{1/2}=\frac{\ln2}{k}[/tex]

Where, k is rate constant

So,  

[tex]k=\frac{\ln2}{t_{1/2}}[/tex]

[tex]k=\frac{\ln2}{30}\ min^{-1}[/tex]

The rate constant, k = 0.0231 min⁻¹

Using integrated rate law for first order kinetics as:

[tex][A_t]=[A_0]e^{-kt}[/tex]

Where,  

[tex][A_t][/tex] is the concentration at time t

[tex][A_0][/tex] is the initial concentration

Given that:

The rate constant, k = 0.0231 min⁻¹

Initial concentration [tex][A_0][/tex] = 7.50 mg

Final concentration [tex][A_t][/tex] = 0.25 mg

Time = ?

Applying in the above equation, we get that:-

[tex]0.25=7.50e^{-0.0231\times t}[/tex]

[tex]750e^{-0.0231t}=25[/tex]

[tex]750e^{-0.0231t}=25[/tex]

[tex]x=\frac{\ln \left(30\right)}{0.0231}[/tex]

[tex]t=147.24\ min[/tex]