The tall of the tree is 23.048 ft.
Solution:
Given data:
Angular size of a tree = [tex]\left(\frac{1}{2}\right)^{\circ}[/tex]
Distance = 0.5 miles = 2640 feet
To find the tall of the tree:
Formula to calculate the height of the tree is
[tex]$\text{Physical size}= \text{Angular size}\times\frac{2\pi\times \text{distance}}{360^{\circ}}[/tex]
[tex]$ = \left(\frac{1}{2}\right)^{\circ}\times\frac{2\pi\times 2640}{360^{\circ}}[/tex]
[tex]$ = \left(\frac{1}{2}\right)^{\circ}\times\frac{44\pi}{3^{\circ}}[/tex]
[tex]$ = 23.048[/tex]
Physical size = 23.048 ft
Hence the tall of the tree is 23.048 ft.