A uniformly charged ring of radius 10.0 cm has a total charge of 78.0 μC. Find the electric field on the axis of the ring at the following distances from the center of the ring. (Choose the x-axis to point along the axis of the ring.)(a) 1.00 cm(b) 5.00 cm(c) 30.0 cm(d) 100 cm

Respuesta :

Answer:

6908316.619 N/C

25087609.3949 N/C

6652357.02259 N/C

690831.6619 N/C

Explanation:

x = Distance from the ring

R = Radius of ring = 10 cm

q = Charge = 78 μC

k = Coulomb constant = [tex]8.99\times 10^{9}\ Nm^2/C^2[/tex]

Electric field at a point x is from a ring given by

[tex]E=\dfrac{kqx}{(x^2+r^2)^{1.5}}[/tex]

For 1 cm

[tex]E=\dfrac{kqx}{(x^2+r^2)^{1.5}}\\\Rightarrow E=\dfrac{8.99\times 10^9\times 78\times 10^{-6}\times 0.01}{(0.01^2+0.1^2)^{1.5}}\\\Rightarrow E=6908316.619\ N/C[/tex]

The electric field is 6908316.619 N/C

For 5 cm

[tex]E=\dfrac{kqx}{(x^2+r^2)^{1.5}}\\\Rightarrow E=\dfrac{8.99\times 10^9\times 78\times 10^{-6}\times 0.05}{(0.05^2+0.1^2)^{1.5}}\\\Rightarrow E=25087609.3949\ N/C[/tex]

The electric field is 25087609.3949 N/C

For 30 cm

[tex]E=\dfrac{kqx}{(x^2+r^2)^{1.5}}\\\Rightarrow E=\dfrac{8.99\times 10^9\times 78\times 10^{-6}\times 0.3}{(0.3^2+0.1^2)^{1.5}}\\\Rightarrow E=6652357.02259\ N/C[/tex]

The electric field is 6652357.02259 N/C

For 100 cm

[tex]E=\dfrac{kqx}{(x^2+r^2)^{1.5}}\\\Rightarrow E=\dfrac{8.99\times 10^9\times 78\times 10^{-6}\times 1}{(1^2+0.1^2)^{1.5}}\\\Rightarrow E=690831.6619\ N/C[/tex]

The electric field is 690831.6619 N/C