Respuesta :

Answer:

The answer is b = 30 ft and h = 40 ft.

Step-by-step explanation:

Given:

The height of a parallelogram is 10ft more than its base

The area is 1200 ft².

Now, to solve for b and h.

Let the base (b) be [tex]x.[/tex]

And the height (h) is = [tex]x+10.[/tex]

Area = 1200 ft².

Now, to solve we put formula of area:

[tex]Area =b\times h[/tex]

[tex]1200=x\times (x+10)[/tex]

[tex]1200=x^2+10x[/tex]

Subtracting both sides by 1200 we get:

[tex]0=x^2+10x-1200\\x^2+10x-1200=0[/tex]

Now, solving the quadratic equation:

[tex]x^2+40x-30x-1200=0[/tex]

[tex]x(x+40)-30(x+40)=0[/tex]

[tex](x+40)(x-30)=0[/tex]

[tex]x+40=0[/tex]        and       [tex]x-30=0[/tex]

Subtracting                  Adding both sides

both sides                    by 30 we get:

by 40 we get:      

[tex]x=-40.[/tex]                           [tex]x=30.[/tex]

So, we will take the positive result.

[tex]x=30.[/tex]

Thus, the base (b) = 30 ft.

Now, getting the height (h) by substituting the value of [tex]x[/tex]:

[tex]x+10\\=30+10\\=40\ ft.[/tex]

Therefore, the answer is b = 30 ft and h = 40 ft.