FUNCTIONS: In the space provided, type the answer in descending order as it applies without any spaces between the letters, numbers, or symbols.
Type the composition (fog)(x) of the given functions:
f(x) = x^2 + 2x − 6 and g(x) = x + 5.

Respuesta :

Answer:

Hence The composition [tex](fog)(x)[/tex] of the given function is [tex]x^2+12x+29[/tex].

Step-by-step explanation:

Given:

[tex]f(x) = x^2+2x-6[/tex]

[tex]g(x)=x+5[/tex]

We need to find [tex](f o g)(x)[/tex].

Solution:

Now we can say that;

[tex](f o g)(x)[/tex] = [tex]f(g(x))[/tex]

[tex](fog)(x) = (x+5)^2+2(x+5)-6[/tex]

Now Applying distributive property we get;

[tex](fog)(x) = (x+5)^2+2\times x+2\times5-6\\\\(fog)(x) = (x+5)^2+2x+10-6\\\\(fog)(x) = (x+5)^2+2x+4[/tex]

Now Solving the exponent function we get;

[tex](fog)(x) = x^2+2\times x\times 5+5^2+2x+4\\\\(fog)(x) = x^2+10x+25+2x+4\\\\(fog)(x) = x^2+12x+29[/tex]

Hence The composition [tex](fog)(x)[/tex] of the given function is [tex]x^2+12x+29[/tex].