Particles 1 and 2 of charge q1 = q2 = +3.20 × 10−19 C are on a y axis at distance d = 17.0 cm from the origin. Particle 3 of charge q3 = +6.40 × 10−19 C is moved gradually along the x axis from x = 0 to x = +5.0 m. At what values of x will the magnitude of the electrostatic force on the third particle from the other two particles be (a) minimum and (b) maximum? What are the (c) minimum and (d) maximum magnitudes?

Respuesta :

Answer:

(a) 0.17 m

(b) 5.003 m

(c) 6.38 × [tex]10^{-26}[/tex] N

(d) 7.37 ×[tex]10^{-29}[/tex] N

Explanation:

(a) The minimum value of [tex]x[/tex] will occur when q3 = 0 m or at origin and q1, q2 are at 0.17 m so the distance between q3 and q1, q2 is 0.17 m, therefore the minimum value of x= 0.17 m.

(b) The maximum value of x will occur when q3 = 5 m because it is said in the question that 5 is the maximum distance travelled by q3. To find the hypotenuse i.e. the distance between q3 and q1,q2, we use Pythagoras theorem.

[tex]h^{2} = b^{2} + p^{2}[/tex]

[tex]h^{2} = 5^{2} + 0.17^{2} \\h = \sqrt{} 25.03\\h= 5.002 m[/tex]

Hence, the maximum distance is 5.002 m

(c) For minimum magnitude we use the minimum distance calculated in (a)

Minimum Distance = 0.17 m

For electrostatic force=     [tex]F=\frac{kq1q2}{x^{2} }[/tex]

[tex]F=\frac{9 x 10^{9} x3.2x10^{-19}x 6.4x10^{-19} }{0.17^{2} }[/tex]

[tex]F= 6.38[/tex]×[tex]10^{-26} N[/tex]

(d) For maximum magnitude, we use the maximum distance calculated in (b)

Maximum Distance = 5.002 m

Using the formula for electrostatic force again:

F =  [tex]\frac{9x10^{9}x3.2x10^{-19}x6.4x10^{-19} }{5.002^{2} } }[/tex]

F= 7.37×[tex]10^{-29[/tex] N

The maximum value of  [tex]x[/tex]  can be calculated by the Pythagorean theorem.  

The minimum and maximum magnitude electrostatic force is [tex]\bold{6.38 \times 10^{-26 } \rm \ N}[/tex] and [tex]\bold {7.37 \times 10^{-26 } \rm \ N}[/tex].

 

(a) As given in the question, the minimum value of  [tex]x[/tex] will occur when [tex]q3[/tex] will placed at the origin and [tex]q1, q2[/tex] are at 0.17 m. Therefore, the minimum value of   [tex]x[/tex] = 0.17 m.

 

(b) As given in the question, the maximum distance travelled by q3 is 5 m. The maximum value of  [tex]x[/tex]  can be calculated by the Pythagorean theorem.  

[tex]h = \sqrt {5^2 +0.17^2 }\\h = 5.002 \rm \ m[/tex]

Thus, the maximum distance is 5.002 m

(c) The minimum magnitude of the electrostatic force can be calculated by the formula,  

[tex]F = \dfrac {k q1q2}{x^2}[/tex]

Since the minimum distance is   [tex]x[/tex] = 0.17 m.

So,

[tex]F = \dfrac {9\times 10^9 \times 3.2 \times 10^{-19}\times 6.4 \times 10^{-19}}{0.17^2}\\\\F = 6.38 \times 10^{-26 } \rm \ N[/tex]

D) For the maximum magnitude electrostatic force the distance is 5.002 m,

Hence, the maximum magnitude electrostatic force will be [tex]\bold {7.37 \times 10^{-26 } \rm \ N}[/tex]

Therefore, the minimum and maximum magnitude electrostatic force is [tex]\bold{6.38 \times 10^{-26 } \rm \ N}[/tex] and [tex]\bold {7.37 \times 10^{-26 } \rm \ N}[/tex].

Learn more about electrostatic force,

https://brainly.com/question/9774180