Respuesta :
Answer:
1) 108.27 grams of potassium nitarte must be added to 275 mL of water to produce a solution that freezes at -14.5°C.
2) 1.73 is the actual value of the van't Hoff factor, i.
Explanation:
1) Formula used depression in freezing point ;
[tex]\Delta T_f=T-T_f[/tex]
[tex]\Delta T_f=i\times K_f\times m[/tex]
where,
[tex]T_f[/tex] =Freezing point of solution
T = Freezing point of water
[tex]\Delta T_f[/tex] =depression in freezing point =
i = van't Hoff factor of solute
[tex]K_f[/tex] = freezing point constant
m = molality of solution
We have :
[tex]K_f[/tex] of water = 1.86°C/m ,
Molality of solution = m = ?
[tex]KNO_3(aq)\rightarrow K^+(aq)+NO_3^{-}(aq)[/tex]
i = 2
Freezing point of solution = [tex]T_f=-14.5^oC[/tex]
Freezing point of pure water = T = 0°C
[tex]\Delta T_f=T-T_f[/tex]
[tex]\Delta T_f=0^oC-(-14.5 ^oC)=14.5^oC[/tex]
[tex]14.5^oC=2\times 1.86^oC\times m[/tex]
m = 3.898 molal
3.898 moles of potassium nitrate is dissolved in 1 kg of water or 1000 g of water.
Volume of water , V= 275 ml
Mass of water = m
Density of water= d = 1 g/mL
[tex]m=d\times V=1 g/ml\times 275 mL = 275 g[/tex]
Here, 3.898 moles of potassium nitrate is dissolved in 1 kg of water or 1000 g of water. Then moles of potassium nitarte present in 275 grams of water is :
[tex]\frac{3.989 mol}{1000}\times 275 =1.072 mol[/tex]
Mass of 1.072 moles of potassium nitrate :
1.072 mol × 101 g/mol = 108.27 g
108.27 grams of potassium nitarte must be added to 275 mL of water to produce a solution that freezes at -14.5°C.
2) Formula used an Elevation in boiling point;
[tex]\Delta T_b=T_b-T[/tex]
[tex]\Delta T_b=i\times K_b\times m[/tex]
where,
[tex]T_b[/tex] =boiling point of solution
T = boiling point of water
[tex]\Delta T_b[/tex] =Elevation in boiling point =
i = van't Hoff factor of solute
[tex]K_b[/tex] = Boiling point constant
m = molality of solution
of the solution
We have :
[tex]K_b[/tex] of water = 0.512°C/m ,
Molality of solution = m = 3.90 m
i =?
The boiling point of pure water = T = 100.00°C
The boiling point of solution = [tex]T_b[/tex]= 103.45°C
[tex]\Delta T_b=103.45^oC-100.00^oC=3.45^oC[/tex]
[tex]\Delta T_b=i\times K_b\times m[/tex]
[tex]3.45^oC=i\times 0.512 ^oC/m\times 3.90 m[/tex]
[tex]i=\frac{3.45^oC}{0.512 ^oC/m\times 3.90 m}=1.73[/tex]
1.73 is the actual value of the van't Hoff factor, i.