5. In a physics lab, an artifact is dropped from the roof of the school
building, 98 feet above the ground. The height h (in feet) of the ball
above the ground is given by the function h(t) = - 16t2 + 98, where t is the
time in seconds.
Part A:
Graph the function.
167² +98

Respuesta :

Explanation:

The function is [tex]h(t)=-16 t^{2}+98[/tex]

To graph the function, let us find the coordinates of the function [tex]h(t)=-16 t^{2}+98[/tex]

For [tex]t=-2[/tex],

[tex]\begin{aligned}h(t) &=-16(-2)^{2}+98 \\&=-16(4)+98 \\&=-64+98 \\&=34\end{aligned}[/tex]

The ordered pair is [tex](-2,34)[/tex]

For [tex]t=-1[/tex],

[tex]\begin{aligned}h(t) &=-16(-1)^{2}+98 \\&=-16(1)+98 \\&=-16+98 \\&=82\end{aligned}[/tex]

The ordered pair is [tex](-1,82)[/tex]

For [tex]t=0[/tex],

[tex]\begin{aligned}h(t) &=-16(0)^{2}+98 \\&=98\end{aligned}[/tex]

The ordered pair is [tex](0,98)[/tex]

For [tex]t=1[/tex],

[tex]\begin{aligned}h(t) &=-16(1)^{2}+98 \\&=-16(1)+98 \\&=-16+98 \\&=82\end{aligned}[/tex]

The ordered pair is [tex](1,82)[/tex]

For [tex]t=2[/tex],

[tex]\begin{aligned}h(t) &=-16(2)^{2}+98 \\&=-16(4)+98 \\&=-64+98 \\&=34\end{aligned}[/tex]

Thus, plotting these ordered pairs we get the graph of the function. The image of the graph is attached below.

Ver imagen vijayalalitha