Respuesta :

The solution is [tex]49 c^{4}+84 c^{2}+36[/tex]

Explanation:

The expression is [tex]\left(7 c^{2}+6\right)^{2}[/tex]

The square of a binomial is always a trinomial.

To determine the square of a binomial we shall use the formula.

The formula to find the square of a binomial is

[tex](a+b)^{2}=a^{2}+2 a b+b^{2}[/tex]

Let us use this formula to multiply the expression [tex]\left(7 c^{2}+6\right)^{2}[/tex]

Here [tex]a=7c^{2}[/tex] and [tex]b=6[/tex]

Substituting the values in the formula, we get,

[tex]\left(7 c^{2}+6\right)^{2}=\left(7 c^{2}\right)^{2}+2 \cdot 7 c^{2} \cdot 6+6^{2}[/tex]

Squaring each term, we have,

[tex]\left(7 c^{2}+6\right)^{2}=49 c^{4}+2\cdot 7 c^{2} \cdot 6+36[/tex]

Multiplying the product of two terms, we get,

[tex]\left(7 c^{2}+6\right)^{2}=49 c^{4}+84c^{2}+36[/tex]

Thus, the solution is [tex]49 c^{4}+84 c^{2}+36[/tex]