Respuesta :

Answer:

The unit cell edge length is 393.21 pm.

The density of platinum is [tex] 21.31 g/cm^3[/tex]

Step-by-step explanation:

Number of atom in FCC unit cell = Z = 4

Density of platinum =

Edge length of cubic unit cell= a= ?

Radius of the platinum atom, r = 139 pm

r = 0.3535 a

[tex]a=\frac{139 pm}{0.3535}=393.21 pm=393.21\times 10^{-10} cm[/tex]

[tex]1 pm = 10^{-10} cm[/tex]

Atomic mass of Pt(M) = 195.08 g/mol

Formula used :  

[tex]\rho=\frac{Z\times M}{N_{A}\times a^{3}}[/tex]

where,

[tex]\rho[/tex] = density

Z = number of atom in unit cell

M = atomic mass

[tex](N_{A})[/tex] = Avogadro's number  

a = edge length of unit cell

On substituting all the given values , we will get the value of 'a'.

[tex]d=\frac{4\times 195.08 g/mol}{6.022\times 10^{23} mol^{-1}\times (393.21\times 10^{-10} cm)^{3}}[/tex]

[tex] d= 21.31 g/cm^3[/tex].

The unit cell edge length is 393.21 pm.

The density of platinum is [tex] 21.31 g/cm^3[/tex].